Fixed-point Implementations of Speech Recognition Systems

نویسندگان

  • Yuet-Ming Lam
  • Man-Wai Mak
  • Heng-Wai Leong
چکیده

Fixed-point hardware implementations of signal processing algorithms can often achieve higher performance with lower computational requirements than a floating-point implementation. However, the design of such systems is hard due to the difficulty of addressing the quantization issues. This paper presents an optimization approach to determining the wordlengths of fixed-point operators in a speech recognition system. This approach enables users to achieve the same result as in floating-point implementation with minimum hardware resources, resulting in reduced cost and perhaps lower power consumption. These techniques lead to an automated optimization based design methodology for fixedpoint based signal processing systems. An object oriented library, called Fixed, was developed to simulate fixed-point quantization effects. Quantization effects during recognition were analyzed, and appropriate wordlength that can balance hardware cost and calculation accuracy were determined for the operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon Technologies for Speaker Independent Speech Processing and Recognition Systems in Noisy Environments

As the speaker independent speech recognition problem itself is highly computation intensive, the external environment adds to recognition complexity. As per Moore’s law, doubling of number of transistors in a chip per year lead to the integration of various architectures in high density chips which lead to the implementation of high complex mixed signal speech systems in FPGA and ASIC technolo...

متن کامل

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

On Speeding up the Deep Neural Network Based Speech Recognition Systems

Recently, the deep neural network (DNN) as acoustic model has been successfully applied to large vocabulary continuous speech recognition (LVCSR) tasks, e.g. a relative word error reduction of around 20% can be achieved compared to a state-of-the-art discriminatively trained Gaussian Mixture Model (GMM). However, due to the huge number of parameters in the DNN, real-time decoding is a bottlenec...

متن کامل

Developing a Standardized Medical Speech Recognition Database for Reconstructive Hand Surgery

Fast and holistic access to the patients’ clinical record is a major requirement of modern medical decision support systems (DSS). While electronic health records (EHRs) have replaced the traditional paper-based records in most healthcare organization, the data entry into these systems remains largely manual. Speech recognition technology promises substitution of the more convenient speech-base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002